Quantifying Systemic Evolutionary Changes by Color Coding Confidence-Scored PPI Networks
نویسندگان
چکیده
A current major challenge in systems biology is to compute statistics on biomolecular network motifs, since this can reveal significant systemic differences between organisms. We extend the “color coding” technique to weighted edge networks and apply it to PPI networks where edges are weighted by probabilistic confidence scores, as provided by the STRING database. This is a substantial improvement over the previously available studies on, still heavily noisy, binary-edge-weight data. Following up on such a study, we compute the expected number of occurrences of non-induced subtrees with k ≤ 9 vertices. Beyond the previously reported differences between unicellular and multicellular organisms, we reveal major differences between prokaryotes and unicellular eukaryotes. This establishes, for the first time on a statistically sound data basis, that evolutionary distance can be monitored in terms of elevated systemic arrangements.
منابع مشابه
Dense Graphlet Statistics of Protein Interaction and Random Networks
Understanding evolutionary dynamics from a systemic point of view crucially depends on knowledge about how evolution affects size and structure of the organisms' functional building blocks (modules). It has been recently reported that statistics over sparse PPI graphlets can robustly monitor such evolutionary changes. However, there is abundant evidence that in PPI networks modules can be ident...
متن کاملDescribing the Orthology Signal in a PPI Network at a Functional, Complex Level
In recent work, stable evolutionary signal induced by orthologous proteins has been observed in a Yeast protein-protein interaction (PPI) network. This finding suggests more connected subgraphs of a PPI network to be potential mediators of evolutionary information. Because protein complexes are also likely to be present in such subgraphs, it is interesting to characterize the bias of the orthol...
متن کاملModelling the Yeast Interactome
The topology behind biological interaction networks has been studied for over a decade. Yet, there is no definite agreement on the theoretical models which best describe protein-protein interaction (PPI) networks. Such models are critical to quantifying the significance of any empirical observation regarding those networks. Here, we perform a comprehensive analysis of yeast PPI networks in orde...
متن کاملEvolutionary analysis and interaction prediction for protein-protein interaction network in geometric space
Prediction of protein-protein interaction (PPI) remains a central task in systems biology. With more PPIs identified, forming PPI networks, it has become feasible and also imperative to study PPIs at the network level, such as evolutionary analysis of the networks, for better understanding of PPI networks and for more accurate prediction of pairwise PPIs by leveraging the information gained at ...
متن کاملHIPPIE v2.0: enhancing meaningfulness and reliability of protein–protein interaction networks
The increasing number of experimentally detected interactions between proteins makes it difficult for researchers to extract the interactions relevant for specific biological processes or diseases. This makes it necessary to accompany the large-scale detection of protein-protein interactions (PPIs) with strategies and tools to generate meaningful PPI subnetworks. To this end, we generated the H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009